본 연구는 한약재 중 다환방향족탄화수소 검출에 대한 다양한 분석 장비를 이용한 분석 방법을 진행하였다. 액체 크로마토그래피-형광검출법 (HPLC-FLD), 샌드위치 효소 결합 면역흡착 분석법(Sandwich-ELISA)으로 다양한 한약재에서 형성된 벤조[a]피렌을 포함한 다환방향족탄화수소(PAHs)의 수준을 결정하기 위해 분석 방법들이 개발되었다. 이에 대해 세포 독성 방법은 앞의 개발된 분석방법들을 통해 한약재 제품 및 추출물에서 벤조[a]피렌이 유발하는 간독성의 저감화 방법을 개발하는 것을 목표로 하고 있다. 본 논문에서는 크게 세 장으로 나누어 연구를 진행하였다. 첫 번째 연구의 목적은 국내 한약재 제품들에 함유된 4가지 다환방향족탄화수소 (벤조[a]피렌, 벤조[a]안트라센, 벤조[b]플루오란텐 및 크라이센)를 HPLC-FLD를 통해 정량화하는 것이다. 한약재는 분석을 위해 비정유, 정유 매트릭스들을 사용하여 70개 제품을 분석하였고 3-methylcholanthrene이 내부표준물질로 사용되었다. 분석을 위한 전처리에는 초음파 추출 및 액-액 추출 방법을 사용하였고 기기는 HPLC-FLD를 사용하였다. 4가지 다환방향족탄화수소에 대한 적절한 검출한계 (0.05-0.18 μg/kg), 정량한계 (0.14-0.54 μg/kg), 직선성 (R2 > 0.99), 정밀성 (0.22-2.90 %), 정확성 (87.08-101.11 %) 및 회수율 (85.72-112.18 %)이 나왔다. 4가지 다환방향족탄화수소의 평균 함량은 3.88 μg/kg이다. 두 번째 연구의 목적은 단일 클론 항체 (B[a]P-13)와 염소 항-마우스 IgG (H+L) 교차-흡착된 2차 HRP 항체에 의한 검출을 샌드위치 효소 결합 면역흡착 분석 (Sandwich-ELISA) 방법의 개발을 통해 한약재 제품에서 벤조[a]피렌을 정량화하는 것이다. 벤조[a]피렌-단백질 접합체의 제조를 위해 동결 건조된 B[a]PBA-BSA 접합체를 단백질 분자당 커플링된 처리에서 생성하였다. 벤조[a]피렌에 대해 제안된 샌드위치 효소 결합 면역흡착 분석 (Sandwich-ELISA) 방법은 적절한 검출한계 (0.08-0.19 μg/kg), 정량한계 (0.24-0.57 μg/kg), 직선성 (R2 > 0.99), 정밀성 (3.80-10.26 %), 정확성 (95.58-117.06 %)이 나왔다. 교차 반응성 (Cross-reactivity)은 벤조[a]피렌 (100%), 크라이센 (39%), 벤조[b]플루오란텐 (27%), 벤조[a]안트라센 (41%)로 나타났다. 용매로 아세토니트릴(MeCN)을 사용하여 벤조[a]피렌 단일 클론 항체 (B[a]P-13)로 표준화된 샌드위치 효소 결합 면역흡착 분석 (Sandwich-ELISA) 방법에 대한 보정 곡선을 표현했다. 한약재에서 HPLC-FLD와 비교한 Sandwich-ELISA와 벤조[a]피렌 검출의 상관관계는 (R2 = 0.991)로 표현되었으며 ELISA (B[a]P μg/kg)값을 HPLC-FLD (B[a]P μg/kg)값으로 나눈 그래프의 기울기는 0.7292였다. 따라서 벤조[a]피렌 단일 클론 항체 (B[a]P-13)를 이용한 샌드위치 효소 결합 면역흡착 분석 (Sandwich-ELISA) 방법은 한약재에서 벤조[a]피렌 검출을 위한 대체 스크리닝 방법이다. 세 번째 연구의 목적은 한약재 제품 및 추출물에서 벤조[a]피렌이 유발하는 간독성의 저감화 방법을 개발하는 것이다. 벤조[a]피렌에 의해 유도된 B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE)에 의한 BPDE-DNA 부가물의 형성에 대한 감소를 알아보았다. HepG2 세포에서 벤조[a]피렌은 독성을 나타냈고 벤조[a]피렌에 neferine, daidzein, genistein을 함유한 장단콩과 연자육의 물질 처리로 인한 결과는 BPDE-DNA 부가물의 형성을 감소시켰다. 이러한 결과와 대조적으로 세포의 생존율은 증가하였다. 세포의 물질 처리에서 벤조[a]피렌-대사산물(BPDE)의 수준은 장단콩 및 연자육에서 neferine, daidzein, genistein에 의해 감소되는 것으로 확인되었다. 이러한 결과는 장단콩 및 연자육에서 neferine, daidzein, genistein이 BPDE-DNA 부가물의 형성에 대해 벤조[a]피렌이 유발하는 간독성을 저감화하는 방법을 보여준다. 종합적으로, 한약재 제품 및 추출물은 HPLC-FLD, Sandwich-ELISA 분석 방법의 개발을 통해 벤조[a]피렌의 정량화가 가능하며 앞의 2가지 개발된 분석 방법들에 이어 벤조[a]피렌이 유발하는 간독성의 저감화 방법을 개발하였다. 이러한 세 가지 연구 결과를 통해 본 연구에서는 한약재 제품 중 다환방향족탄화수소를 사전 스크리닝 할 수 있는 분석 방법 및 신속 스크리닝 방법을 개발하고 한약재 제품 중 생리활성물질을 이용한 인체 노출 저감화 방법을 개발하였다.
This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in herbal medicine products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various herbal medicine products using high performance liquid chromatography−fluorescence detector (HPLC-FLD), sandwich enzymelinked immunosorbent assay (ELISA) and reduction of the benzo[a]pyrene-induced hepatotoxicity. In this dissertation, the study was conducted by dividing it into three major chapters. The objective of the first study was to quantify four polycyclic aromatic hydrocarbons (PAH4) in herbal medicine products in Korea. The PAH4 (benzo[a]anthracene, benzo[b]fluoranthene, chrysene, and benzo[a]pyrene) were analyzed in 70 popularly used herbal medicine products without containing essential oil and containing essential oil matrices, using 3-methylcholanthrene as the internal standard. Ultrasonication and liquid−liquid extraction was followed by HPLC-FLD analysis. Satisfactory linearity (R2 = 0.99), limit of detection (0.05−0.18 μg/kg), limit of quantification (0.14−0.54 μg/kg), recovery (85.72−112.18%), and precision (0.22−2.90%) of PAH4 were acquired. PAH contamination was detected in all herbal medicine products without containing essential oil and containing essential oil matrices types. In 44 samples of herbal medicine products, all PAH4 were detected, and in 2 samples of the other herbal medicine products, only benzo[b]fluoranthene was detected. The average concentration of PAH4 was 3.88 μg/kg. The validated analytical method used for preventing the human health risks related to the consumption of herbal medicines. The objective of the second study was developed the sandwich enzyme-linked immunosorbent assay (ELISA) method using benzo[a]pyrene monoclonal antibody (B[a]P-13), goat anti-mouse IgG (H+L) cross-adsorbed secondary antibody and horseradish peroxidase (HRP) for B[a]P detection in herbal medicine products. For preparation of B[a]P-protein conjugates, lyophilized B[a]PBA-BSA conjugate was created in processing in coupled per molecule of protein. The proposed sandwich ELISA method for B[a]P was validated in satisfactory linearity (R2 > 0.99), the limit of detection (LOD) (0.08−0.19 μg/kg) and limit of quantification (LOQ) (0.24−0.57 μg/kg), accuracy (95.58−117.06 %), and precision (3.80−10.26 %). The cross-reactivity (CR) was found for B[a]P (100%), CHR (39%), B[b]F (27%), and B[a]A (41%). As a solvent, acetonitrile (MeCN) was used to express the normalized sandwich ELISA calibration curves with benzo[a]pyrene monoclonal antibody (B[a]P-13). Correlation of B[a]P detection in herbal medicines with ELISA compared to HPLC-FLD was expressed good correlation (R2 = 0.991) and the slope of the graph for the ELISA (B[a]P-equivalents μg/kg) value divided by the HPLC-FLD (B[a]P μg/kg) value was 0.7292. Therefore, sandwich ELISA method using benzo[a]pyrene monoclonal antibody (B[a]P-13) could be an alternative screening method for detection of B[a]P in herbal medicine products. The objective of the third study was to reduce the benzo[a]pyrene-induced hepatotoxicity method in herbal medicine products. B[a]P which classified as a group 1 carcinogen and metabolized to B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) causes mutagenic DNA addition products. The reduction of BPDE-DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) derived by benzo[a]pyrene (B[a]P). In HepG2 cells, B[a]P exhibited toxicity and substance treatment of the cells with B[a]P with neferine in lotus and daidzein, genistein in soybean reduced the BPDE-DNA adducts level. The level of B[a]P-metabolites in the substance treatment of the cells was presented that BPDE levels were reduced by neferine in lotus and daidzein, genistein in soybean. These results suggest that neferine in lotus and daidzein, genistein in soybean prevent B[a]P-induced hepatotoxicity for BPDE-DNA adduct formation. The overall research objective of this study was to develop an analysis method and rapid screening method that can prescreen polycyclic aromatic hydrocarbons in herbal medicine products and to represent a method for reducing the human exposure using physiologically active substances in herbal medicine products.
국문 초록Chapter 1 : Literature Review 11.1. Polycyclic aromatic hydrocarbons 21.1.1. Characteristics of polycyclic aromatic hydrocarbons 21.1.2. Benzo[a]anthracene 51.1.3. Chrysene 71.1.4. Benzo[b]fluroanthene 91.1.5. Benzo[a]pyrene 111.2. Chemistry and formation of polycyclic aromatic hydrocarbons 131.3. Polycyclic aromatic hydrocarbons in herbal medicines 151.4. Analysis method using chromatography 171.5. Analysis method using enzyme-linked immunosorbent assay 201.6. Reduction of the benzo[a]pyrene-induced hepatotoxicity 251.7. Conclusions 29Chapter 2 : Evaluation of polycyclic aromatic hydrocarbons content of herbal medicine products in Korea by HPLC-FLD 302.1. Introduction 312.2. Materials and methods 332.2.1. Chemicals and reagents 332.2.2. Sample preparation for analysis of PAH4 332.2.3. Clean-up and extraction for herbal medicine products preprocessing 342.2.4. HPLC-FLD analysis of PAH4 352.2.5. Quantification and identification of PAH4 362.2.6. Method validation for analytical quality assurance 362.3. Results and discussions 372.3.1. Validation of analytical method for PAHs analysis 372.3.2. Comparison of PAH4 contents in herbal medicine product samples 452.4. Conclusions 53Chapter 3 : Sandwich enzyme-linked immunosorbent assay (ELISA) to quantify monoclonal antibody (B[a]P-13) for herbal medicine products 543.1. Introduction 553.2. Materials and methods 583.2.1. Chemicals and reagents 583.2.2. Preparation of B[a]P derivatives 593.2.3. Sampling and extraction procedure for herbal medicines 593.2.4. Sandwich ELISA procedure 613.2.5. Evaluation of cross-reactivity for determination 633.2.6. Matrix effect of the organic solvents 633.2.7. Correlation of benzo[a]pyrene detection ELISA compared to HPLC-FLD in herbal medicine products 633.2.8. Statistical analysis 643.3. Results and discussions 653.3.1. Limit of detection, limit of quantification in the ELISA calibration curve 653.3.2. Evaluation of cross-reactivity for determination 693.3.3. Matrix effect of the organic solvents 723.3.4. Correlation of benzo[a]pyrene detection ELISA compared to HPLC-FLD in herbal medicine products 753.4. Conclusions 83Chapter 4 : Reduction of the benzo[a]pyrene-induced hepatotoxicity by neferine in lotus and daidzein, genistein in soybean 844.1. Introduction 854.2. Materials and methods 874.2.1. Chemicals and reagents 874.2.2. Sample preparations for extraction of neferine 884.2.3. Sample preparations for extraction of daidzein, genistein 894.2.4. HepG2 cells culture and treatment 894.2.5. Cell viability assay and proliferation assay 904.2.6. Cell extraction 904.2.7. HPLC-UV analysis for method validation 914.2.8. BPDE-DNA adduct formation analysis 924.2.9. The typical intracellular metabolites of B[a]P were measured by high performance liquid chromatography (HPLC) 934.2.10. Statistical analysis 934.3. Results and discussions 944.3.1. Reduction of B[a]P-induced hepatotoxicity by neferine, daidzein, genistein 944.3.2. Reduction of intracellular B[a]P metabolites by neferine, daidzein, genistein 1014.3.3. Validation of analytical method for neferine, daidzein, genistein analysis 1074.3.4. Comparison of neferine, daidzein and genistein concentrations in lotus and soybean samples 1154.4. Conclusions 122Chapter 5. Conclusions 123References 126Abstract 156