메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

강나루 (전북대학교, 전북대학교 일반대학원)

지도교수
오성훈
발행연도
2023
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this study, the researchers focused on optimizing the molding process of composite materials using the Long Fiber Injection (LFI) method. They conducted a series of experiments to analyze the characteristics of polyurethane and different types of fibers. The findings of their research shed light on important aspects of the process. To evaluate adhesive strength, the researchers measured contact angles of glass fiber, carbon fiber, and polyurethane resin. They discovered that company B exhibited the highest adhesion, followed by companies K and D. Among the carbon fiber models, H2550 and T-700 displayed similar adhesive strength, while glass fiber model P209 demonstrated superior adhesion compared to R66A. The curing behavior of polyurethane resins was also investigated. Although company K''s resin showed the highest adhesive strength, its long curing time of 26 minutes and 40 seconds rendered it unsuitable for the LFI process, which required faster production cycles. On the other hand, company B''s resin exhibited a remarkably short curing time of just 5 minutes and 30 seconds, making it ideal for high-speed LFI production. Moreover, the researchers observed that increasing the catalyst content further reduced the curing time. The mechanical properties of polyurethane resins were analyzed by evaluating tensile strength and interfacial shear strength. Company B''s resin displayed the highest tensile strength, while both carbon fiber models exhibited comparable interfacial shear strength. Among the glass fiber models, P209 outperformed R66A in terms of shear strength. Based on these results, company B''s resin was selected as the preferred basematerial for LFI, along with carbon fiber model H2550 and glass fiber model P209. Determining the optimal fiber content was another important aspect of the study. By producing flat plates with varying fiber contents, the researchers found that a 20% carbon fiber content and a 30% glass fiber content yielded the best results. Beyond these thresholds, strength values declined, indicating the importance of maintaining an appropriate fiber content for optimal performance. Lastly, the researchers employed LFI equipment to produce polyurethane composite materials with different glass fiber contents. Tensile strength measurements revealed that the highest strength was achieved with a 25% glass fiber content, with a sharp drop observed beyond 35%. This decrease was attributed to reduced wettability between the matrix and fibers, as well as decreased resin fluidity with an increased number of fibers.

목차

목차ⅰ
List of Figures ⅳ
List of Tables ⅵ
Abstract ⅶ
제 1 장 서론 1
1.1 연구 배경 1
1.2 연구목적 6
제 2 장 이론적 배경 7
2.1 탄소섬유 7
2.1.1 탄소섬유 개요 7
2.1.2 탄소섬유의 종류 8
2.2 유리섬유 10
2.3 폴리우레탄수지 12
2.4 고속액상성형공정 14
2.4.1 핸드레이업 스프레이 15
2.4.2 Resin Transfer Molding(RTM) 16
2.4.3 Long Fiber injection(LFI) 18
제 3 장 실험 20
3.1 실험재료 20
3.2 실험방법 22
3.3 측정 및 분석 23
3.3.1 정적 접촉각 측정 23
3.3.2 동적 접촉각 측정 25
3.3.3 Dielectric Analysis(DEA) 분석 27
3.3.4 기계적 물성 분석 29
3.3.4.1 계면전단강도 측정 29
3.3.4.2 폴리우레탄평판 기계적 물성 측정 31
3.3.4.3 폴리우레탄 섬유강화복합재료 물성 측정 33
제 4 장 결과 및 고찰 35
4.1 폴리우레탄 수지와 섬유간의 젖음성 분석 35
4.1.1 LFI 적용 수지의 정적접촉각 분석 35
4.1.2 탄소섬유, 유리섬유 동적접촉각 측정 분석 38
4.1.3 수지와 섬유간의 계면 접착력 분석 41
4.2 Dielectric Analysis(DEA) 분석 43
4.3 기계적 물성 평가 45
4.3.1 폴리우레탄 평판 제작 및 기계적 물성 비교 45
4.3.2 계면전단강도 측정 평가 48
4.4 LAB 스케일 섬유 함량별 물성 평가 51
4.5 LFI 장비를 이용한 시험편 제작 및 물성평가 57
제 5 장 결론 60
참고문헌 62

최근 본 자료

전체보기

댓글(0)

0