메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지(B) 정보과학회논문지(B) 제24권 제12호
발행연도
1997.12
수록면
1,408 - 1,418 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
원자력발전소와 같이 복잡한 시스템에서 사고상태를 조기에 진단하여 적절한 운전조치를 취하는 것이 필요하다. 원자력발전소에서 사고가 발생하면 주요변수 및 기기의 증상패턴에 따라 사고유형을 패턴으로 표시할 수 있으며, 이 패턴을 인식함으로써 사고의 종류를 진단할 수 있다. 따라서 시간적인 특성과 공간적인 특성을 효과적으로 모델링할 수 있는 이중 확률 모델인 HMM (Hidden Markov Model)을 적용할 수 있게 된다. 학습용 데이터는 시험용 시뮬레이터로부터 획득하여 자기조직화지도를 이용하여 벡터양자화된다. 각 사고에 대해서 학습에 의하여 하나의 모델이 생성되며, 학습은 최대확률 파라미터 추정 방법을 사용하는데, Forward-Backward 알고리즘과 Baum-Welch 재추정 알고리즘을 이용한다. 진단은 주어진 입력패턴에 내해서 가장 큰 확률 값을 가지는 모델로 결정하며, Viterbi 알고리즘으로 각 모델에 대해 최적의 경로를 구한 다음, 최적 경로에 따른 확률을 구한다. HMM을 이용한 사고진단시스템은 left-to-right 모델을 사용하였으며, 8개의 사고와 정상상태를 진단하기 위하여 22개의 입력변수를 사용하였다. 모의 실험에서 8개의 사고유형 모두 정확하게 진단하였으며,입력패턴이 센서의 오류, 일부 기기의 오동작등으로 하나의 변수값이 부정확한 경우에도 거의 정확하게 진단하였다.

목차

요약

Abstract

1. 서론

2. 사고진단시스템 설계

3. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017748848