메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第46卷 第3號
발행연도
2009.5
수록면
8 - 14 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 은닉 마코브 모델을 이용한 인터넷 정보 추출 방법을 제안하고, 인터넷상의 웹 사이트에서 상품가격을 효율적으로 추출하는 문제에 적용되었다. 제안된 방법에서 시스템으로 입력되는 데이터는 검색엔진의 인터페이스 URL 인데, 상품의 이름을 포함하며, 시스템의 출력은 추출된 각 상품의 상품명, 가격, 사진, 그리고 URL을 목록형태로 보여준다. 주어진 관찰 데이터를 이용해, 은닉 마코브 모델의 학습단계에서는 Maximum Likelihood 알고리듬과 Baum-Welch 알고리듬이 학습에 사용되었으며, 학습된 은닉 마코브 모델을 이용하여 시스템의 출력을 찾는 방법으로는 Viterbi 알고리듬이 사용되었다. 제안된 HMM 기반의 정보 검출기는 실제상황에서 수집된 관찰데이터에 대해 실험이 수행되었는데, 기존의 PEWEB 알고리듬에 비해 검출도와 정확도에서 매우 향상된 결과를 보이고 있으며, 특히 정확도에서는 99%이상의 높은 결과를 보여주고 있다. 한편, 보다 충실한 학습을 위해 학습 데이터의 수를 800개 이상으로 증가시켰을 때 검출도 역시 약 93%로 향상된 성능을 보여주었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 은닉 마코브 모델
Ⅲ. 은닉 마코브 모델 기반의 정보추출 시스템
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018351394