메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a Time-Delayed Recurrent Neural Network (TDRNN) for temporal correlations and prediction, and its application to phone recognition, The TDRNN employs adaptive time-delays and recurrences where the adaptive time-delays make the network choose the optimal values of time-delays for the temporal location of the important information in the input sequence and the recurrences enable the network to encode and integrate temporal context information of sequences. The TDRNN and Multiple Recurrent Neural Network(MRNN) described in tills paper, Adaptive Time-Delay Neural Network (ATNN) proposed by Lin, and Time-Delay Neural Network (TDNN) introduced by Waibel were simulated and applied to the chaotic time series prediction of Mackey-Glass delay-differential equation, the Korea stock market index prediction, and the phone recognition. The simulation results suggest that employing time-delayed recurrences between layer in the network is more effective for temporal correlations, prediction, and recognition than putting multiple time-delays into the neurons or their connections. The best performance is attained by the TDRNN. The TDRNN will be well applicable for temporal signal recognition, prediction and identification.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Time-Delayed Recurrent Neural Network (TDRNN)

Ⅲ. Experimental Results

Ⅳ. Conclusions

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017769467