메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상 정합은 물리적으로 유사한 영상 내의 영역들을 기하학적으로 일치시키는 처리이며 지형정보, 영상검색, 원격탐사, 의료영상 등의 많은 영상처리 응용에서 사용된다. 영상 정합에 관한 연구는 주로 회전, 크기, 위치 등의 인자 추출에 소요되는 시간과 정확성에 중점을 두어 왔다. 본 연구에서는 영상의 특징 점들에 대한 일차 고유벡터의 방향 분포를 히스토그램으로 표현하고 이를 비교 분석함으로써 정합하는 방법을 제안한다. 일차 고유벡터를 이용함으로써 특징 묘사의 단순성을 제공하고, 히스토그램을 이용하여 정합 인자를 미리 추정함으로써 정합 인자 추출 시 목적함수의 연산에 소요되는 비용을 현저하게 줄였다. 본 연구의 결과를 평가하기 위해 제안한 방식을 일반 영상과 ICG(IndoCyanine Green) 망막 영상에 적용한 결과를 보여주고 목적함수의 연산횟수와 시간 복잡도를 기존의 방법들과 비교하였다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 정합 알고리즘

4. 실험 및 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017797523