메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제27권 제2호
발행연도
2000.6
수록면
199 - 208 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
내용 기반 멀티미디어 정보 검색에서 유사성에 기반한 k-최근접 데이타 탐색 질의는 매우 중요한 질의이다. 일반적으로 멀티미디어 데이타는 고차원 특징 벡터로 표현되기 때문에 기존의 k-최근접탐색 알고리즘은 멀티미디어 정보 검색에 효율적이지 못하다. 따라서 이러한 응용을 위해서는 다소 근사적 검색 결과를 가져오더라도 빠른 검색 성능을 제공하는 근사 k-최근접 탐색 알고리즘이 요구된다. 이를 위해 본 논문에서는 고차원 데이타를 위한 새로운 근사 k-최근접 탐색 알고리즘을 제안한다. 아울러, 제안하는 근사 k-최근접 탐색 알고리즘을 기존의 알고리즘과 검색 성능면에서 성능 평가를 수행한다. 성능 평가 결과, 기존 알고리즘의 검색 성능을 크게 개선할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 근사 k-최근접 탐색 알고리즘

4. 실험 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017798646