메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 절차지향 소프트웨어로부터 클래스와 상속성을 추출하기 위한 방법론을 제안한다. 본 논문에서 제안한 방법론은 모든 경우의 객체 후보군으로부터 정의된 클래스 후보군과 그들의 상속성을 생성하여 클래스 후보군과 영역 모델 사이의 관계성과 유사 정도를 가지고 최고 또는 최적의 클래스 후보군을 선택하는데 초점을 둔다. 클래스와 상속성 추출 방법론은 다음과 같은 두드러진 특징을 가지고 있다: 정적(속성)과 동적(메소드)인 클러스터링 방법을 사용하고, 클래스 후보군의 경우는 추상화에 초점을 두며, m개의 클래스 후보군과 n개의 클래스 후보 사이의 상속 관계의 유사도 측정 즉, 2차원적 유사도 측정은 m개의 클래스 후보와 n개의 클래스 후보 사이의 전체 그룹에 대한 유사도를 구하는 수평적 측정과 클래스 후보군들에서 상속성을 가진 클래스의 집합과 영역 모델에서 같은 클래스 상속성을 가진 클래스 집합 사이의 유사도를 위한 수직적 측정방법이 있다. 이러한 방법론은 최고 또는 최적의 클래스 후보군을 선택하기 위해 재공학 전문가에게 광범위하고 통합적인 환경을 제시하고 있다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 클래스 추출 및 상속성 추출

4. 실험 및 분석

5. 결론 및 향후연구과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017823902