메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA)기법과 정규화를 이용한 영상분류 방법을 제안한다. 이 제안된 방법은 전처리 없이 ICA나 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시킨다. 영상에 잡음이 인가된 경우, PCA는 N(0, 0.4), ICA는 N(0, 0.53)까지의 분류가 가능함을 보이는 반면에 비해, 제안된 정규화 전처리는 N(0, 0.75)까지 영상분류가 됨을 실험에서 보이고 있다.

목차

요약

Abstract

1. 서론

2. 잡음에 대한 강인성 고찰

3. 정규화 전처리 방법

4. 모의 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017823917