메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제5호
발행연도
2004.8
수록면
623 - 629 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a Efficient method for the mixed image separation is presented using independent component analysis and the new fast expectation-maximization(EM) algorithm. In general, the independent component analysis (ICA) is one of the widely used statistical signal processing scheme in various applications. However, it has been known that ICA does not establish good performance in source separation by itself. So, Innovation process which is one of the methods that were employed in image separation using ICA, which produces improved the mixed image separation. Unfortunately, the innovation process needs long processing time compared with ICA or EM. Thus, in order to overcome this limitation, we proposed new method which combined ICA with the New fast EM algorithm instead of using the innovation process. Proposed method improves the performance and reduces the total processing time for the Image separation. We compared our proposed method with ICA combined with innovation process. The experimental results show the effectiveness of the proposed method by applying it to image separation problems.

목차

Abstract
1. Introduction
2. Preliminaries
3. Proposed Efficient Algorithm for ImageSeparation
4. Experimental Results
5. Conclusion
Reference
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014867942