메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다층신경회로망 구조의 재구성은 회로망의 일반화 능력이나 효율성의 관점에서 중요한 문제로 연구되어왔다. 본 논문에서는 신경회로망에 학습된 은닉 지식들을 추출하여 조합함으로써 신경회로망의 구조를 재구성하는 새로운 방법을 제안한다. 먼저, 각 노드별로 학습된 대표적인 지역 규칙을 추출하여 각 노드의 불필요한 연결구조들을 제거한 후, 이들의 논리적인 조합을 통하여 중복 또는 상충되는 노드와 연결구조를 제거한다. 이렇게 학습된 지식을 분석하여 노드와 연결구조를 재구성한 신경회로망은 처음의 신경회로망에 비하여 월등히 감소된 구조 복잡도를 가지며 일반적으로 더 우수한 일반화 능력을 가지게 됨을 실험결과로서 제시하였다.

목차

요약

Abstract

1. Introduction

2. Node - Based Restructuring Using Extracted Rules

3. Global Knowledge - Based Restructuring using Logical Aggregation

4. Experimental Results

5. Conclusion

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862952