메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
문서 클러스터링은 정보검색 시스템에서 검색 과정의 효율성을 향상시키기 위해서 많이 사용된다. 기존의 K-means 클러스터링과 같은 거리-기반 접근 방법은 거리에 대한 척도를 정해야 하는 문제가 있고, 또한 전체 자질 공간에서 지역적 특성에 민감하기 때문에 문서 내에 노이즈가 존재할 경우 만족스러운 결과를 내지 못할 수 있다. 그리고 기본적으로 문서 데이터는 희소성(sparseness)을 갖기 때문에 정규 분포를 가정한 mixture 모델을 적용하기에도 어려움이 있다. 본 논문에서는 Helmoholtz machine에 의한 문서 클러스터링 방법을 제안한다. 제안되는 방법에서는 하나의 ... 전체 초록 보기

목차

요약

1. 서론

2. Helmholtz Machine

3. 문서 데이터에 적용된 Helmholtz machine

4. 실험

5. 결론

감사의 글

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017868141