메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
화행(speech act)이란 화자의 발화를 통해 나타나는 화자의 의도를 가르키며 자연어로 된 발화를 이해하고 이에 대한 응답을 생성하기 위해 중요한 요소이다. 본 논문에서는 한국어 화행 결정의 성능을 높이기 위해 두 단계 방법을 제안한다. 첫 번째 단계는 형태소 분석결과만을 이용하여 추출된 문장자질과 이전 화행을 이용하여 추출된 문맥자질 중 정보량이 높은 자질을 선택하는 단계이다. 이 단계에서는 형태소 분석 시스템을 사용하여 전체 자질을 구성하고 문서분류 분야의 자질 선택에서 높은 성능을 보인 카이제곱 통계량을 이용하여 효과적인 자질 선택한다. 두 번째 단계는 선택된 자질과 신경망을 이용하여 화행을 분석하는 단계이다. 본 논문에서 제시한 방법은 형태소 분석 결과만을 이용하여 자동적으로 화행을 결정할 수 있는 가능성을 제시하였으며 효과적인 자질 선택을 통해 자질의 수를 감소시키고 정보량이 높은 자질을 사용하여 속도와 성능을 향상 시켰다. 본 논문은 제안된 시스템을 실제 영역에서 수집되어 전사된 10,285개의 발화와 17개의 화행으로 이루어진 대화 코퍼스에 대해 실험하였다. 본 논문은 이 코퍼스에서 8,349개 발화를 학습 코퍼스로 사용하여, 실험 코퍼스의 1,936개 발화에 대해 1,709개에 대해 정확한 화행을 제시하여, 88.3%의 정확도를 보였다. 이는 자질 선택을 하지 않았을 때 보다 약 8%가 증가된 결과이다.

목차

요약

Abstract

1. 서론

2. 전체 시스템 구조

3. 자동 화행 분석 시스템

4. 실험 및 평가

5. 결론 및 향후 과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017867235