메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
조합 최적화 문제인 순회 판매원 문제(Traveling Salesman Problem, TSP)를 유전자 알고리즘(Genetic Algorithm)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[1]을 이용하여 접근하는 것은 최적 해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP 문제를 해결하기 위한 또 다른 접근법으로 ACS(Ant Colony System) 알고리즘을 소개하고 새로운 페로몬 갱신 방법을 제시하고자 한다. ACS 알고리즘은 다수의 개미들이 경로를 만들어 가는 과정에서 각 에지상의 페로몬 정보를 이용하며, 이러한 반복적인 경로 생성 과정을 통해 최적 해를 발견하는 방법이다. ACS 기법의 전역 갱신 단계에서는 생성된 모든 경로들 중 전역 최적 경로에 속한 에지들에 대하여 페로몬을 갱신한다. 그러나 본 논문에서는 전역 갱신 규칙이 적용되기 전에 생성된 모든 에지에 대하여 페로몬을 한번 더 갱신한다. 이 때 페로몬 갱신을 위해 각 에지들의 발생 빈도수를 이용한다. 개미들이 생성한 전체 에지들의 발생 빈도수를 페로몬 정보에 대한 가중치(weight)로 부여함으로써 각 에지들에 대하여 통계적 수치를 페로몬 정보로 제공할 수 있었다. 또한 기존의 ACS 알고리즘보다 더 빠른 속도로 최적 해를 찾아내며 더 많은 에지들이 다음 번 탐색에 활용될 수 있게 함으로써 지역 최적화에 빠지는 것을 방지할 수 있다.

목차

요약

Abstract

1. 서론

2. 연구 배경

3. 제안한 방법

4. 실험 및 결과

5. 결론 및 앞으로의 연구 방향

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017872632