메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2004년 춘계학술대회논문집
발행연도
2004.2
수록면
109 - 112 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 도함수에 기초한 수치적 최적화 기법들(derivative-based optimization)은 비선형 최적화 문제를 풀기 위해 목적식의 1차 도함수의 정보를 이용하여 정류점(stable point)인 최적해를 찾아 나가는 방식의 취하고 있다. 그러나 이런 방법들은 목적식의 국부 최적해(local minimum)을 찾는 것은 보장하나, 전역 최적해(global minimum)를 찾는 데에는 실패할 경우가 많다. 국부 최적해와 전역 최적해는 모두 목적식의 1차 도함수가 ‘0’인 값을 가지는 특징이 있으므로, 국부 또는 전역 최적해를 구하는 구하는 과정은 목적식의 1차 도함수가 ‘0’인 해를 찾는 방정식 문제로 변화될 수 있다. 따라서 본 논문에서는 비선형 방정식의 해를 찾는데 좋은 성능을 보이는 Homotopy 방법을 이용하여 목적식의 1차 도함수에 관한 비선형 방정식을 푸고, 이를 통해 비선형 최적화 문제의 모든 국부 최적해를 찾아냄으로써 전역 최적화 문제를 해결하는 방법을 제안하고자 한다. 제안된 방법론을 다양한 전역 최적화 문제에 적용한 결과, 기존의 방법들에 비해 더 좋은 성능을 보임을 알 수 있었다.

목차

Abstract

1. 연구배경

2. 비선형 문제를 풀기 위한 기존의 방법론들

3. 비선형 최적화 기법으로서의 Homotopy

4. 수치예제 실험 결과

5. 결론 및 토의

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017888372