메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다.
여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter) 추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다.
제안된 알고리즘은 k-NN분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. ARPA 학습 기법

4. 실험 및 분석

5. 결론

참고문헌

저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890265