메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천 시스템은 일상의 정보를 필터링 해주는 웹 지능화 기술 중의 하나이다. 현재까지 협력기반 (사회기반) 추천 시스템, 내용기반 추천시스템과 이들의 장점을 혼합한 추천시스템들이 개발되어 왔다. 본 논문에서는 클러스터링 기법을 항목기반 협력필터링 틀에 적용한 일명 ICHM이라 불리는 새로운 형태의 혼합 추천 시스템을 소개한다. 이 방법은 항목의 내용 정보를 협력필터링 틀 안에 통합시킴으로써 평가 데이타의 희박성을 줄일 수 있을 뿐만 아니라 새로운 항목 추천 시 발생하는 문제점을 해결할 수 있다. ICHM 방법의 특성 및 성능을 평가하기 위하여 MovieLense 데이타를 이용한 다양한 실험을 하였다. 실험 결과, ICHM 방법이 항목기반 협력 필터링의 예측 질을 향상시킬 뿐만 아니라 새로운 항목 추천 시에도 아주 유용함을 확인할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. ICHM

4. 실험 및 평가

5. 결론

참고문헌

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891393