메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 시험 표본 주위의 영역에 대한 속성을 이용한 다중 인식기 선택 방법을 제안한다. 기존의 DCS-LA 동적 인식기 선택 방법은 시험 표본 주위의 학습표본들을 사용해서 각 인식기의 국부적정확성을 계산하여 인식기를 동적으로 선택하기 때문에 인식 시간이 오래 걸린다. 본 논문에서는 특징공간에서 국부적인 속성을 계산해서 그 속성값에 적합한 인식기를 미리 선정해서 저장해 놓은 후 시험 표본이 들어오면 그 주변의 속성값에 따라 저장된 인식기에서 선택을 하기 때문에 인식시간을 줄일 수 있다.
국부적인 속성으로는 표본 주위의 작은 영역에 대한 엔트로피와 밀도를 계산하여 사용하였으며 이들을 특징공간속성(Feature Space Attribute)라고 하였다. 이들 두 속성으로 이루어지는 속성 공간을 규칙적인 사각형 셀로 나누어, 학습과정에서 각각의 학습표본에 대해 계산된 속성값이 어떤 셀에 속하는지를 구한다. 또한 각 셀에 속하는 학습표본들에 대해 각 인식기의 국부적 정확도를 구하여 셀에 저장한다. 시험 과정에서 시험표본에 대해 속성값 계산을 통해 그 표본이 속하는 셀을 구한 후 그 셀에서 국부적 정확도가 가장 높은 인식기로 인식한다.
Elena 데이타베이스를 사용해서 기존의 방법과 제안된 방법을 비교하였다. 제안된 방법은 기존의 DCS-LA와 거의 같은 인식률을 나타내지만 인식속도는 약 4배 가까이 빨라짐을 실험을 통해 확인할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 국부적 속성을 이용한 다중 인식기 선택

4. 실험 및 결과 분석

5. 결론

참고문헌

저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891404