메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제30권 12C호
발행연도
2005.12
수록면
1,262 - 1,267 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
EBF(Elliptical basis function) 신경망은 비선형 처리를 가능하게 하며, 잡음에 강하고 빠른 수렴을 하는 장점이있다. 또한 EBF는 설계가 간단하여 실시간 음성 구간 검출기(Voice Activity Detection, VAD)에 적용하기 용이하다. 따라서 전송 효율을 높이기 위해 사용되는 음성구간 검출기를 제안함에 있어 EBF 신경망을 이용하였다. EBF의 학습 알고리즘은 K-평균 클러스터링(K-means Clustering) 알고리즘과 선형 최소 제곱 방법(Least Mean Square error, LMS)을 사용하였다. G.729 Annex B 와 RBF(Radial Basis Function) 신경망을 이용한 음성구간 검출기와 성능 비교에 있어서, G.729 Annex B 음성 검출기보다 70% 이상의 높은 성능개선을 나타냈고, RBF 신경망을 이용한 음성구간 검출기 보다 비음성 구간에서 50%정도의 높은 효율을 보였다.

목차

요약

ABSTRACT

Ⅰ. 서론

Ⅱ. 음성 구간 검출기

Ⅲ. 실험 및 성능분석

Ⅳ. 결론

참고문헌

저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-015153285