메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 개미 군 집단 알고리즘을 융합한 새로운 적응형 유전 알고리즘을 제안하고, 제안된 알고리즘이 확률적으로 최적 해에 수렴함을 증명한다. 실험을 통해서, 제안된 알고리즘은 최적 해로의 수렴이 어려운 여러 가지 대표적인 함수들에 대하여 elitist 전략을 사용한 유전 알고리즘보다 더 빠른 속도로 최적 해에 수렴하고 한 군집 내의 모든 해들이 최적 해로 수렴하며 파라미터 값에 따라 새로운 탐색이나 현 상태로의 귀착의 정도를 조절할 수 있는 유연성 있는 알고리즘인 것을 보인다.

목차

요약

Abstract

1. 서론

2. Graph - based ACO의 융합 : ANT - GA

3. 성능 평가

4. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015185536