메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.20 No.3
발행연도
2006.3
수록면
366 - 375 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps : the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it established the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

목차

Abstract

1. Introduction

2. Background and Proposed Methodology

2. Industrial Application

4. Conclusions

References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-015355248