메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제어 가능하고 상황에 따라 반응하는 아바타의 제작은 컴퓨터 게임 및 가상현실 분야에서 중요한 연구 주제이다. 최근에는 아바타 애니메이션과 제어의 사실성을 높이기 위해 대규모 동작 캡처 데이타가 활용되고 있다. 방대한 양의 동작 데이타는 넓은 범위의 자연스러운 인간 동작을 수용할 수 있다는 장점을 갖는다. 하지만 동작 데이타가 많아지면 적절한 동작을 찾는데 필요한 계산량이 크게 증가하여 대화형 아바타 제어에 있어 병목으로 작용한다. 이 논문에서 우리는 레이블링(labeling)이 되어있지 않은 모션 데이타로부터 아바타의 행동을 학습시키는 새로운 방법을 제안한다. 이 방법을 사용하면 최소의 실시간 비용으로 아바타를 애니메이션하고 제어하는 것이 가능하다. 본 논문에서 제시하는 알고리즘은 Q-러닝이라는 기계 학습 기법에 기초하여 아바타가 동적인 환경과의 상호작용에 따른 시행착오를 통해 주어진 상황에 어떻게 반응할지 학습하도록 한다. 이 접근 방식의 유효성은 아바타가 서로 간에, 그리고 사용자에 대해 상호작용하는 예를 보임으로써 증명한다.

목차

요약
Abstract
1. 서론
2. 배경
3. 상태-행동 모델
4. 학습
5. 실시간 합성
6. 실험
7. 토의
참고문헌
저자소개

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015528666