메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
W3C의 권고안인 RDF Semantics는 RDFS 추론에 사용할 RDFS 함의 규칙을 제안하였다. 널리 사용되고 있는 RDF 저장소 시스템인 Sesame는 전방향 추론 방식을 사용하여 RDBMS 기반 RDFS 추론을 지원한다. Sesame의 전방향 추론 전략을 사용할 때에는 데이타 저장 시에 추론을 하기 때문에 추론 성능이 데이타 저장 성능에 영향을 미친다. 이런 문제점을 개선하기 위해 본 논문에서는 RDBMS 기반의 전방향 추론 엔진의 성능 향상을 위한 RDFS 함의 규칙 적용 순서를 제안한다. 제안한 규칙 적용 순서는 추론 과정을 대부분의 경우 추론 과정의 반복 없이 한번에 끝낼 수 있도록 하며 완벽한 추론 결과를 보장한다. 또한 앞서 적용한 규칙에 의해 생성된 결과를 추측할 수 있어 추론 과정에서 중복된 결과 생성을 줄일 수 있다. 본 논문에서는 실제 사용하는 RDF 데이타들을 사용하여 Sesame와의 추론 성능을 비교하며 제안한 방법이 RDFS 추론 성능을 향상시킬 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경 지식
4. RDFS 추론의 최적화 기법
5. 실험 결과
6. 결론과 향후 연구
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015535996