메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 한국경영과학회지 한국경영과학회지 제31권 제1호
발행연도
2006.3
수록면
15 - 24 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

목차

Abstract
1. 연구주제
2. 실험인자
3. 비대칭도
4. 평가측도
5. 실험 및 분석
6. 사례분석
7. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-015540124