메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제43권 제3호
발행연도
2006.5
수록면
39 - 49 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
본 논문에서는 비전 기술에 기반을 둔 손 모양 인식 시스템의 성능 향상을 위하여 강화학습에 의한 손 모양 인식 방법을 제안한다. 비전 센서에 기반을 둔 손 모양 인식은 손의 높은 자유도로 인한 자체 겹침 (self-occlusion) 현상과 관찰 방향 변화에 따른 입력 영상의 다양함으로 인식에 어려움이 따른다. 따라서 비전 기반 손 모양 인식의 경우, 카메라와 손 간의 상대적인 각도에 제한을 두거나 여러 대의 카메라를 배치하는 것이 일반적이다. 그러나 카메라와 손 간의 상대적 각도에 제한을 두는 경우에는 사용자의 움직임에 제약이 따르게 되며, 여러 대의 카메라를 사용할 경우에도 각 입력된 영상에 대한 인식 결과를 최종 인식 결과에 반영하는 방식에 대하여 추가적인 고려를 해야 한다. 본 논문에서는 비전 기반 손 모양 인식의 이러한 문제점을 개선하기 위하여 인식 과정에서 사용되는 특징을 손 구조적인 각도 정보와 손 윤곽선 정보로 나누고 강화학습을 통하여 각 특징간의 연관성을 정의하는 방식을 제안한다. 또한 제안된 방법을 세 대의 카메라를 이용한 손 모양 인식 시스템에 적용하여 유용성을 검증한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 연구 및 문제점
Ⅲ. Object Shape and Structure Network(OSS-Net)
Ⅳ. OSS-Net을 이용한 손 모양 인식
Ⅴ. OSS-Net 구축과 학습
Ⅵ. 실험 및 결과
Ⅶ. 결론 및 추후 연구 과제
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015585214