메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
우리말글학회 우리말글 우리말글 제37집
발행연도
2006.8
수록면
143 - 169 (27page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study discusses the grammatical features of quotation verbs focused on modern Korean language. Quotation verbs were first divided into dialogue quotation verbs and monologue quotation verbs, and depending on the origin, they were also divided into Chinese words and aboriginal ones.
First, among aboriginal dialogue quotation verbs, ‘sAlpta, aloyta, yeysjApta' requiring dative noun of [+honorific] were investigated to find that ‘sAlpta’ is mostly combined with dative particle ‘-skuy’, while ‘aloyta’ with various dative particles including not only ‘-skuy(kkuy)’ but also ‘-uykey/kuy/uy/e/Ai’ and so on. It was also learned that the quotation verb of ‘mutta’ is mostly used for the interrogative mode, both for direct and indirect quotations. But the quotation verb ‘hAta' tends to be used only for indirect quotations.
Second, the Chinese quotation verbs were divided into three types of ‘曰,’ ‘jyenhAta,’ ‘kohAta,’ and ‘chyenghAta’ The ‘曰’ type is used only in the manner in which quotation verb precedes the quoted remark and for direct quotations. The ‘jyenhAta’ type is mainly used for the descriptive mode, while the ‘kohAta’ type comes with the imperative mode. The ‘chyenghAta’ type comes with the imperative and solicitation modes.
Lastly, in monologue quotation verbs the ‘hyeyta’ type covers ‘sAingkakhAta,’ while the ‘tulita’ type covers ‘uysimhAta, nekita, jehta’ and so on. The former is mostly used with the descriptive and interrogative modes, and mainly in indirect quotations. The ‘tulita’ type, as a psychological verb, is characterized that the quoted remark receives indirect quotation of interrogative mode.

목차

영어 초록
1. 머리말
2. 인용문의 구조와 인용동사
3. 근대국어 인용동사의 문법적 특징
4. 맺음말
참고문헌
저자소개

참고문헌 (1)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-710-017255967