메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2006 가을 학술발표논문집 제33권 제2호(B)
발행연도
2006.10
수록면
412 - 415 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 파라미터에 대한 정보가 없는 데이터, 즉, 각각의 이벤트 발생에 불확실성이 존재하는 데이터들에 대한 인과 관계의 학습을 위해 그래픽 모델인 베이지안 네트워크를 사용하였다. 이를 위해 기존에는 주로 네트워크 학습에 K2, Sparse Candidate 등의 방법이 사용되었다. 학습 및 추론에 있어서 어떻게 하면 기존의 방법보다 정확하고 빠르게 처리할 수 있을지에 대한 개선된 알고리즘을 제시하고 다른 알고리즘들과의 성능 비교를 통해 제시한 방법론이 보다 좋은 성능을 가짐을 보였다.

목차

요약
1. 서론
2. 베이지안 네트워크
3. 실험
4. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017398195