메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.20 No.12
발행연도
2006.12
수록면
2,079 - 2,086 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A fundamental study for developing a fault diagnosis system of a pump is performed by using neural network. Acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The neural network model used in this study was 3-1ayer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer. And the codes of pump malfunctions were selected as units of output layer. Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. Neural network trained by acoustic signals can detect malfunction or diagnose fault of a given machine from the results.

목차

1. Introduction
2. Experimental Apparatus and Method
3. Neural Network
4. Results
5. Concluding Remarks
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017531975