메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한설비공학회 설비공학논문집 설비공학논문집 제15권 제3호
발행연도
2003.3
수록면
159 - 166 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (15)

초록· 키워드

오류제보하기
The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. To detect partial faults of the air-conditioning system, a neural network algorithm may be used. In this study, the neural network algorithm using normalized input data by the standard deviation was applied. And the [7×10×10×1] neural network structure was selected. Test results showed that the neural network algorithm using normalized input data was very effective to detect the condenser fouling and the evaporator fan fault of an air-conditioning system.

목차

ABSTRACT

1. 서론

2. 고장모사 실험장치

3. 고장 검출 시스템

4. 고장 검출 결과

5. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-553-015237186