메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
대상인식 기술을 실제 환경에 적용하기 위해서는 조명 보상 기술 개발이 필수적이다. 본 논문은 조명의 방향 변화로 인한 영상의 변화를 보상하는 방법으로써 레티넥스 모델과 조명-반사율 모델에 주목하고, 이를 다양한 방법으로 구현하고 그 성능을 비교함으로써 효과적인 조명 보상방법을 제시하였다. 본 논문에서는 레티넥스 모델을 단일 스케일 레티넥스, 다중 스케일 레티넥스와 이를 신경망으로 재구성한 레티넥스 신경망, 다중 스케일 레티넥스 신경망으로 구현하였다. 조명 반사율 모델은 조명 영상을 이산코사인변환, 웨이블릿변환을 통한 저주파 필터링과 가우시안 블러로 구한 후, 이를 이용하여 반사율 영상을 계산하여 조명 보상을 수행하도록 하였다. 구현된 조명 보상을 9가지 조명 방향 변화가 존재하는 얼굴 영상에 대해 조명 보상을 수행하여, 그 성능을 측정하고 비교하였으며, 더불어 주성분분석 계수를 이용하여 그 성능을 측정하였다. 실험 결과 조명-반사율 모델이 보다 좋은 성능을 보였으며, 주성분분석 계수를 추출한 경우 전반적인 성능향상을 얻을 수 있었다.

목차

요약
Abstract
1. 서론
2. 영상 기반의 조명 보상 모델
3. 얼굴 인식에 대한 비교 실험
4. 결론
참고논문

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017548264