메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제7권 제1호
발행연도
2007.1
수록면
48 - 57 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
눈좌표 검출은 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈좌표 검출 방법은 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 다중스케일 가버 특징 벡터 모델 기반의 개선된 눈좌표 검출 방법을 제안한다. 제안된 방법은 먼저 다운샘플링된 입력 얼굴 이미지에서 초기 눈좌표에서의 가버 특징 벡터와 해당 스케일의 눈 모델 번치와의 가버젯 유사도를 이용하여 눈좌표를 추정한다. 이후 추정된 눈좌표를 상위 스케일의 얼굴 이미지에서의 눈좌표 초기값으로 취하고 상위 스케일 얼굴 이미지에서 같은 방법으로 눈좌표를 찾으며, 이를 반복적으로 하여 최종적으로 원래 얼굴 이미지에서의 눈좌표를 확정한다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 모델 기반 눈좌표 검출 방법이 계산량은 크게 증가 시키지 않으면서 기존 연구들에서 보고된 다른 눈좌표 검출 방법에 비해 정확도가 개선된 검출 방법임을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 가버 특징 벡터 기반 눈좌표 검출
Ⅲ. 다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-017676289