메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.5
발행연도
2007.5
수록면
779 - 788 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The immune system has pattern recognition capabilities based on reinforced learning, memory and affinity maturation interacting between antigens and antibodies. The paper deals with the adaptation of artificial immune system into genetic algorithm based design optimization. The present study utilizes the pattern recognition from the immune system and the evolution from genetic algorithm. The basic idea is derived from the fact that designs should be distinguished whether they are usable/feasible or infeasible and should be improved towards the optimal solution. For the expression of design solutions, binary coded strings are used to represent antigens and antibodies in artificial immune system and chromosomes in genetic algorithm. The paper discusses the procedure of constrained optimization that does not rely on any detailed mathematical formulation for constraint handling. A number of mathematical function minimization problems are examined for verification, and practical engineering optimization problems including inequality constraints are explored to support the proposed strategy.

목차

Abstract
1. Introduction
2. Immune system
3. GA based immune simulation
4. Proposed strategy
5. Illustrative examples
6. Engineering optimization
7. Closing remarks
Acknowledgments
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016649814