메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2005년도 한국방송공학회 학술대회
발행연도
2005.11
수록면
199 - 202 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 다국적 언어의 문자 인식은 표준패턴의 구조적 분석이 쉽지 않을 뿐만 아니라 학습패턴 집합의 규모와 특징의 수가 증가함으로 인하여 특징추출 및 인식 과정에서 방대한 계산량이 요구된다. 이에 본 연구에서는 학습 데이터에 포함되는 다량의 특징 집합으로부터 인식에 필요한 효과적인 특징을 선별함으로써 패턴 분류기의 효율성을 개선하기 위한 방법론을 고찰한다. 이를 위하여 수정된 형태의 Adaboost 기법을 제안하고 이를 적용한 실험 결과로부터 그 유용성을 고찰한다. 제안된 알고리즘은 초기의 특징 집합을 취약한 성능을 갖는 다수의 분류기(classifier)로서 고려하며, 이로부터 반복학습을 통하여 개선된 분류기를 점진적으로 선별해 나가게 된다. 학습의 원리는 주어진 학습패턴 집합에 기초하여 일종의 교사학습(supervised learning) 방식으로 이루어진다. 각 패턴에 할당된 가중치 값은 각 단계에서 산출되는 분류결과에 따라 적응적으로 수정되어 반복학습이 진행됨에 따라 점차 보완적 성능을 갖는 분류기를 선택할 수 있게 한다. 즉, 주어진 각 학습패턴에 대하여 초기에 균등한 가중치가 부여되며, 반복학습의 각 단계에서 적용되는 분류기의 출력을 분석하여 오분류된 패턴의 가중치 분포를 증가시켜 나간다. 본 연구에서는 실제 응용으로서 OSD 메뉴 검증 시스템을 대상으로 제안된 이론을 적용하고 그 타당성을 평가한다.

목차

요약
1. 서론
2. TV OSD 메뉴 자동검증 시스템
3. Adaboost를 이용한 학습 기법
4. 실험 결과
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-568-016674579