메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제13권 제2호
발행연도
2007.6
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사례기반추론은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터 마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접 이웃 집합을 어떻게 구성하느냐에 따라 영향을 받게 된다. 최근접 이웃 집합의 구성에 있어서 대부분의 선행 연구들은 고정된 값인 k개의 사례를 포함시키는 k-NN 방법을 채택해왔다. 그러나 k-NN 방법을 채택하는 사례기반추론 시스템은 k 값을 너무 크게 혹은 작게 설정하게 되면 예측 성능이 저하된다. 본 연구에서는 이러한 문제를 해결하기 위해 최근접 이웃 집합을 구성함에 있어서 유사도의 임계치 자체를 이용하는 s-NN 방법을 제안하였다. UCI의 Machine Learning Repository에서 제공하는 데이터를 사용하여 실험한 결과, s-NN 방법을 적용한 사례기반추론 모델이 k-NN 방법을 적용한 사례기반추론 모델보다 더 우수한 성능을 보여주었다

목차

1. 서론
2. 사례기반추론
3. 최근접 이웃 집합의 구성을 위한 유사도 임계치의 사용
4. 실험 및 평가
5. 결론
참고문헌
Abstract

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-016930996