메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
예제 기반 학습(instance-based learning) 방법 중 하나인 k-최근접 이웃(k-nearest neighbor, k-NN) 학습은 간단하고 예측 정확도가 비교적 높아 분류 및 회귀 문제 해결을 위한 기반 방법론으로 널리 적용되고 있다. k-NN 학습을 위한 알고리즘은 기본적으로 유클리드 거리 혹은 2-놈(norm)에 기반하여 학습예제들 사이의 거리를 계산한다. 본 논문에서는 유클리드 거리를 일반화한 개념인 p-놈의 사용이 k-NN 학습의 성능에 어떠한 영향을 미치는지 연구하였다. 구체적으로 합성데이터와 다수의 기계학습 벤치마크 문제 및 실제 데이터에 다양한 p-놈을 적용하여 그 일반화 성능을 경험적으로 조사하였다. 실험 결과, 데이터에 잡음임 많이 존재하거나 문제가 어려운 경우에 p의 값을 작게 하는 것이 성능을 향상시킬 수 있었다.

목차

요약
1. 서론
2. k-NN 학습
3. 실험
4. 결론
감사의 글
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014839019