메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
웹의 성장에 따른 기하급수적인 정보의 축적으로 인한 정보과다 (Information Overload) 현상의 심화를 해결하기 위해 이루어져 온 많은 연구 중 하나인 추천 시스템은 사용자에게 고수준의 편의성을 제공하기 위한 시스템으로써 발전해 왔다. 그러나 과거에 고도로 집중화되어 관리, 구축되어 오던 정보와는 달리 Web2.0라는 새로운 웹 환경의 도래와 함께 태그, 블로그 등 새로운 형태와 특성을 가지는 정보들이 등장하게 되었다. 웹의 컨텐츠에 대한 메타정보를 사용자가 직접 입력한 Web2.0 기반의 태그 데이터를 활용해서 추천 시스템의 성능을 향상시킬 수 있는 기법을 연구하였다. 추천 기법 중 가장 대표적이고 기초적인 협업 필터링 기법에 태그를 활용하며 태그에 사용자에 대한 중요도를 감안한 가중치 부여 기법에 연구한다. 유사한 성향을 가진 사용자를 식별하는데 있어 태그 집합 간의 유사도를 비교하는 방법을 사용하며 사용자의 성향을 반영하기 위해서 태그와 사용자의 선호도 점수와의 연관성을 분석해서 이를 태그의 가중치로 환산하는 기법을 제안한다.

목차

요약
1. 서론
2. 관련 연구
3. 태그 기반 협업 필터링 기법
4. 실험 방법
5. 실험결과 및 분석
6. 결론 및 향후과제
7. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015985598