메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제7권 제11호
발행연도
2007.11
수록면
23 - 33 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력적 필터링은 피어슨 상관 계수에 의해 유사도를 구하고, 선호도를 기반으로 이웃 선정 방법을 사용 하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 및 확장성의 문제를 가지고 있다. 이러한 문제점을 개선하기 위하여 아이템 기반 협력적 필터링이 실용화되었으나 아이템의 속성을 반영하지는 못한다. 본 논문에서는 기존 추천 시스템의 문제점을 보완하기 위하여 분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링을 제안하였다. 제안한 방법에서는 희박성 문제를 해결하기 위하여 명시적 데이터에 기반한 아이템 유사도와 묵시적 데이터에 기반한 사용자 유사도를 복합적으로 참조한다. 참조 결과에 대해 Naive Bayesian을 적용한다. 또한 속성을 반영하기 위해 아이템 분류속성간의 유사관계 순위를 아이템 유사도 계산에 반영함으로써 정확성을 높일 수 있었다.

목차

요약
Abstract
1. 서론
2. 협력적 필터링과 Naive Bayesian
3. 분류속성 가중치와 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링
4. 실험 방법
5. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-016116940