메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기상학회 Asia-Pacific Journal of Atmospheric Sciences Journal of the Korean Meteorological Society Vol.42 No.3
발행연도
2006.6
수록면
153 - 167 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The NMC method is widely used to calculate background error estimates in 3DVAR and 4DVAR systems. However, the main shortcoming of this method is likely to be the evolution of the statistics of forecast errors in the 12- and 24-hour forecast ranges rather than those in the 6- or 12-hour range. Further, it is well known that the background error variance for winds tends to be overestimated; therefore, the spatial correlation scales are excessively large. This study demonstrates the possibility of using ensemble forecasts to estimate the background statistics in a limited area model. We found that the perturbation of lateral boundary conditions is effective in generating the proper spread in order to depict forecast errors in a limited area model. We developed a randomized control variable method that generates boundary-perturbed ensembles. This method represents that the correlation between the unbalanced component the streamfunction increases at intermediate latitudes. In other words, a regression analysis that employs ensemble data is less capable of predicting the balanced background errors than one that uses data from the NMC method. Significant forecast improvements are yielded by ensemble background error statistics with boundary perturbations when compared with ensembles that only utilize observation perturbations.

목차

Abstract
1. Introduction
2. Brief description of WRF 3DVAR system and WRF model
3. Experimental setup
4. Results
5. Summary
Acknowledgments
REFERENCES

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-453-016239105