메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
멀티 에이전트 강화 학습에서 해결해야 할 중요한 문제는 자신의 작업 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 한 에이전트가 시행착오적 상호작용을 통해 어떻게 자신의 최적 행동 정책을 학습할 수 있느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 MDP 기반의 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 다른 에이전트에 관해 요구되는 정보나 가정이 현실적이지 못하다는 한계점을 가지고 있다. 본 논문에서는 멀티 에이전트 강화 학습기술에 기초가 되는 기본 개념들을 정형화하고 이들을 기초로 기존 연구들의 특징과 한계점을 비교한다. 그리고 새로운 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서 제안하는 멀티 에이전트 강화학습 방법은 상대 모델을 이용하는 기존의 멀티 에이전트 강화 학습 연구들에서 주로 시도되었던 상대 에이전트의 Q 평가 함수 모델 대신 상대 에이전트의 행동 정책 모델을 학습하며, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동정책 모델을 이용함으로써 학습의 효율성을 높였다. 또한, 본 논문에서는 대표적인 적대적 멀티 에이전트 환경인 고양이와 쥐게임을 소개하고, 이 게임을 테스베드삼아 비교 실험들을 수행하고 그 결과를 설명함으로써 본 논문에서 제안하는 정책 모델 기반의 멀티 에이전트 강화 학습의 효과를 분석해본다.

목차

요약
Abstract
1. 서론
2. 멀티 에이전트 강화 학습
3. 상대방 정책 모델 기반의 강화 학습
4. 실험 및 분석
5. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016454949