메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
권기덕 (경기대학교) 김인철 (경기대학교)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2007년 추계학술대회 논문집
발행연도
2007.11
수록면
294 - 302 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
멀티 에이전트 강화학습에서 중요한 이슈 중의 하냐는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들에 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것에다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다 본 논문에서 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적인 적대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.

목차

Abstract
1. 서론
2. 관련 연구
3. RBFN 기반 멀티 에이전트 강화 학습
4. 실험 및 분석
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-019079661