메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objectives: This study used the characteristics of the knowledge discovery and data mining algorithms to develop hypertension predictive model for hypertension management using the Korea National Health Insurance Corporation database(the insureds' screening and health care benefit data).
Methods: This study validated the predictive power of data mining algorithms by comparing the performance of logistic regression, decision tree, and ensemble technique. On the basis of internal and external validation, it was found that the model performance of logistic regression method was the best among the above three techniques.
Results: Major results of logistic regression analysis suggested that the probability of hypertension was:
- lower for the female(compared with the male)(OR=0.834)
- higher for the persons whose ages were 60 or above(compared with below 40)(OR=4.628)
- higher for obese persons(compared with normal persons)(OR= 2.103)
- higher for the persons with high level of glucose( compared with normal persons) (OR=1.086)
- higher for the persons who had family history of hypertension( compared with the persons who had not)(OR=1.512)
- higher for the persons who periodically drank alcohol( compared with the persons who did not)(OR=1.037 -1.291)
Conclusions: This study produced several factors affecting the outbreak of hypertension using screening. It is considered to be a contributing factor towards the nation's building of a Hypertension Management System in the near future by bringing forth representative results on the rise and care of hypertension.

목차

Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 연구 결과
Ⅳ. 결론
참고문헌
〈ABSTRACT〉

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-517-016457364