메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제12권 제5호
발행연도
2002.10
수록면
385 - 392 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 동적 추천 시스템에서 사용하는 개인화 기법은 주로 협업 필터링 방식으로서 다른 사용자들에 대한 평가 정보를 이용하여 동적 링크를 제공하기 때문에 사용자가 고려하지 못한 아이템들을 추천한다는 장점을 갖고 있다. 그러나 협업필터링 과정은 현재 사용자와 가장 유사한 패턴을 보이는 사용자를 선택하기 위해 전체 사용자와의 유사도를 재계산해야 한다는 계산의 복잡성과 사용자 프로화일의 정보가 현 사용자의 키워드 입력 시점에서 동적으로 갱신되지 않기 때문에 오류정보가 포함될 수 있다는 문제점이 있다.
본 논문에서는 유사한 선호도를 보이는 사용자를 대상으로 군집분석을 수행함으로서, 이웃 사용자를 선택하는 과정을 단순화할 수 있고, 또한 베이지안 학습을 이용하여 사용자의 선호도를 동적으로 갱신할 수 있는 알고리즘을 설계하고 구현하였다. 사용자의 키워드가 입력되는 순간 사전 데이터와 사후 데이터가 선호도 확률에 동적으로 반영됨으로써 오류정보를 최소화한다. 이렇게 설계된 시스템은 실험을 통해 웹 도서 추천시스템에 적용되어 사용자의 만족도를 증가시킬 수 있음을 보인다.

목차

요약
ABSTRACT
1. 서론
2. 군집분석과 베이지안 학습을 이용한 선호도 갱신
3. 웹 도서 동적 추천 시스템의 설계
4. 실험 및 평가
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804721