메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2008 종합학술대회 논문집 제35권 제1호(C)
발행연도
2008.6
수록면
285 - 288 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근의 구문분석 연구는 컴퓨터 성능 향상과 사용 가능한 대량의 구문분석 말뭉치 증가, 견고한 기계학습 기법 개발 등에 힘입어 통계적인 모델 연구가 꾸준히 증가하고 있다. 본 논문에서는 기존에 개발된 다양한 기계학습 기법 중 ME(Maximum Entropy) 모델과 SVM(Support vector machine) 모델을 이용한 한국어 구문분석 방법을 제안한다. 국어정보베이스(KIBS) 구문분석 말뭉치를 가지고 실험한 결과 SVM 모델을 이용한 한국어 구문분석기가 기존의 확률 기반 통계적 한국어 구문분석기의 성능보다도 최대 1.84% 높은 87.46%의 의존관계 결정 정확률을 보였다. 추후 언어지식을 반영한 다양한 자질들을 이용할 경우 성능 향상이 기대된다.

목차

요약
1. 서론
2. 기계학습 기법을 이용한 한국어 구문분석
3. 실험결과 및 분석
4. 결론
감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014838845