메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제14권 제3호
발행연도
2004.6
수록면
273 - 278 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 주인식기로 흔히 사용되는 HMM 인식 알고리즘을 보완하기 위한 방법으로 회귀신경회로망(Recurrent neural networks : RNN)을 적용하였다. 이 회귀신경회로망 중에서 실 시간적으로 동작이 가능하게 한 방법인 다층회귀신경예측 모델(Multi-layer Recurrent Neural Prediction Model : MRNPM)을 사용하여 학습 및 인식기로 구현하였으며, HMM과 MRNPM 을 이용하여 Hybrid형태의 주 인식기로 설계하였다. 설계된 음성 인식 알고리즘을 잘 구별되지 않는 한국어 숫자음(13개 단어)에 대해 화자 독립형으로 인식률 테스트 한 결과 기존의 HMM인식기 보다 5%정도의 인식률 향상이 나타났다. 이 결과를 이용하여 실제 DSP(TMS320C6711) 환경 내에서 최적(인식) 코드만을 추출하여 임베디드 음성 인식 시스템을 구현하였다. 마찬가지로 임베디드 시스템의 구현 결과도 기존 단독 HMM 인식시스템보다 향상된 인식시스템을 구현할 수 있게 되었다.

목차

요약
Abstract
1. 서론
2. 복합형 음성 인식 알고리즘
3. 음성 인식 시스템 구현
4. 음성 인식 실험 및 논의
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014899011