메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제1호
발행연도
2005.2
수록면
87 - 91 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fahlman과 Lebiere의 캐스케이드-상관 (CC) 학습 알고리즘은 신경망의 구성 알고리즘에서 가장 널리 사용되는 것 중의 하나이며, 망에서 은닉 뉴런을 캐스케이드 형태로 취함으로서 매우 강력한 비선형을 표현할 수 있다. 비록 이 멱승이 유용할지 몰라도 대체로 문제를 푸는데는 강력한 비선형성이 요구되지 않으며 단점이 될 수도 있다. CC 알고리즘의 캐스케이드 구조 및 출력 뉴런의 가중치 훈련에 대한 변형된 형태인 3개 모델이 제안되고 경험적으로 비교되었다. 실험결과 다음과 같은 결론을 얻었다 : (1) 패턴분류에 있어서, 새로 추가되는 은닉 뉴런과 출력층간 연결강도만 훈련시키는 모델이 가장 좋은 예측력을 나타내었다; (2) 함수근사 문제에 있어서는 입력-출력 연결강도를 제거하고 시그모이드-선형 작동함수를 사용하는 모델이 CasCor 알고리즘보다 좋은 결과를 나타내었다.

목차

요약
Abstract
1. 서론
2. CC 알고리즘 관련 연구
3. CasCor 패밀리
4. 실험 및 결과 분석
5. 결론 및 향후과제
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014900853