메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 최적 탐색 알고리즘중의 하나인 실수 표현 진화 알고리즘에 자가 적응 세대차 조절을 이용하여 보다 빠른 연산으로 우수해에 접근하기 위한 새로운 방식을 소개한다. 알고리즘의 성능에 영향을 끼치는 진화 속도를 기존 진화 방식과 유전연산자의 수정을 통해 조절하여 탐색 성능을 개선 한다. 조기 수렴의 방지 및 탐색성능의 향상을 위하여 선택과 대치를 포함한 진화방식을 개선하고, 유전 연산자에 의하여 생성된 자손의 대치확률에 따라서 자손의 생성범위를 자가 적응적으로 조절하여, 보다 적은 계산량으로 전역 최적화를 찾고자 한다. 제안된 방법을 벤치마크 테스트 문제에 적용하여 G3 알고리즘, CMA-ES 그리고 DE 등과 성능을 비교하였다.

목차

요약
1. 서론
2. PCX 연산자 기반 SGG(Self-adaptation Generation Gap)알고리즘
3. 자손의 대치확률 조절과 대치방법의 영향
4. 실험 및 성능 비교
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014903076