메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
커널 함수는 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(FKKNN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상 시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과를 분석한다.

목차

ABSTRACT
1. 서론
2. 커널 함수
3. Fuzzy Kernel K-Nearest Neighbor 알고리즘
4. 실험 결과 및 분석
5. 결론
감사의 글
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015025977