메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 신경망 학습을 위한 데이터 획득시 생길 수 있는 오차를 줄이기 위해 획득 데이터에 대한 전처리 과정을 퍼지로써 구현하는 알고리즘을 제안하였다. 신경망은 주어진 정보를 이용하여 학습을 가능하게 함으로써 시스템의 특징을 추출하는데 매우 우수한 능력을 발휘하고 있다. 그러나 이는 학습에 사용하는 데이터에 오차가 포함되지 않는다는 점을 전제로 하고 있다. 그런데 데이터 획득과정이 인간의 주관적 판단에 의해 수작업으로 이루어지는 경우 학습 데이터는 오차가 존재할 수 있다. 학습 데이터의 오차를 줄이기 위해 조기에 획득된 데이터를 분석하고 추가적인 후보 데이터를 선정하여 데이터 획득 과정에서 큰 영향을 미치는 물체의 거리와 크기를 모두 고려할 수 있도록 퍼지 모델로써 구현하고자 한다.

목차

요약
1. 서론
2. 입체 모니터를 위한 카메라 위치 제어 시스템 개발 환경
3. 학습 데이터 전처리
4. 신경망에 의한 카메라 위치 제어
5. 결론 및 향후 연구
감사의 글
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015066825