메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
문서 분류에서의 one class 분류 문제는 오직 하나의 범주를 생성하고 새로운 문서가 주어졌을 때 그 문서가 미리 만들어진 하나의 범주에 속하는가를 판별하는 문제이다. 기존의 여러 범주로 이루어진 분류 문제를 해결할 때와는 달리 one class 분류에서는 학습 시에 관심의 대상이 되는 하나의 범주와 관련이 있는 문서들만을 사용하여 학습을 수행하기 때문에 범주의 경계를 정하는 것은 매우 어려운 작업이다. 이에 본 논문에서는 기존의 연구에서 one class 분류 문제를 해결할 때 관심의 대상이 되는 예제의 일부를 부정 예제로 간주하여 one class 문제를 two class 문제로 변환하고 추가적으로 새로운 가상 부정 예제를 설정하여 학습을 수행하였던 방법에서 더 나아가 범주화를 위한 적절한 부정자질을 선택하고 이를 긍정자질과 함께 사용하여 학습을 수행한 후 SVM을 통하여 범주화 성능을 확인해 보기로 한다.

목차

요약
1. 서론
2. 관련 연구
3. 자질 선별
4. 가상 부정 예제의 사용
5. 실험 및 평가
6. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0