메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정형적인 프로그래밍 언어에서는 언어를 기계적으로 해석하기 위해 입력의 구조적인 형태를 구축하는 파싱이 필수적인 과정으로 여겨진다. 기계에 기반 해서 개발된 프로그래밍 언어와 달리, 인간의 자유로운 의사소통을 위해 형성된 자연어는 특유의 다양성으로 인해 어휘, 구문, 의미 분석이 매우 어렵다. 반대로 자연어 구조 분석이 성공적으로 이루어지면 응용 시스템의 성능 향상에 상당한 기여를 할 것이라고 여겨지고, 이로 인해 끊임없이 자연어 처리, 특히 구문 분석에 많은 연구가 이루어지고 있다. 본 논문에서는 파싱에 사용되는 문법 전체를 말뭉치로부터 자동 구축하여 영역별 이식성 및 문법의 효율성을 도모했다. 또한 확률적 차트 파싱 기법과 immediate-head 파싱 모델을 적용하여 기존 파싱 시스템의 성능 향상을 시도했다. 세종 말뭉치를 이용한 파서의 성능은 각각 LP/LR 78.98%/79.55%로 나타났다.

목차

요약
1. 서론
2. 관련연구
3. 전체 시스템 개요
4. 한국어 의존 구조 분석
5. 실험 및 분석
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0